AN INVESTIGATION OF LIGHTNING STRIKES OVER JAMAICA

UWI Climate Studies Group at Mona

A. Coy

M. A. Taylor D. Walwyn

OUTLINE

- Introduction
 - Motivation
 - Objectives
- Data
 - Lightning Data
 - Radiosonde Data
- Data Analysis
 - Temporal and Spatial Lightning Variation
 - Prediction of Lightning Occurrence
- Conclusions
- Next Steps
- References

WHAT IS LIGHTNING?

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Wind Shear Instability Moisture Lift

FORMATION OF LIGHTNING

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Motivation

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

- 78% of global lightning production occurs in the 30°S– 30°N band (Christian et al. 2003), which includes Jamaica, located at 18.15N.
- While lightning events are widely studied throughout the world, there is very little documented work done in the Caribbean.
- The only recorded study prior to this one with respect to Jamaica was done by Coy in 2001

Objectives

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

- Determine the temporal variations of lightning over the island.
- Investigate the spatial variations of lightning across the island and offshore.
- Develop predictive models for lightning occurrence over land up to 2¹/₄ days in advance.

•

•

•

•

•

Storm Tracker

STORM TRACKER DISPLAY

Radiosonde Data

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

1200 UTC Soundings from Norman Manley International Airport, Kingston (MKJP)

Convective Indices - thunderstorm potential -Measure lift, moisture, instability, wind shear, e.g., Lifted Index, Convective Available Potential Energy (CAPE), K-Index, Equivalent Potential Temperature

DATA

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Lightning data and Radiosonde data for the periods

- September 1998 to December 1998
- May 1999 to November 1999
- November 2004 to October 2005

Average number of lightning strikes per day for each month

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Strike intensity per square km over land

Autocorrelation of hourly lightning data from November 2004 to October 2005

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Significant correlation for lag of ±24hr, repeated every 24hrs

Absolute Values of the Fourier Transform for the Autocorrelation of the Hourly Time Data

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Strong spectral lines corresponding to 1day, ½ day, 1/3 day and ¼ day

1day and 1/2 day

Noisy, convection not as predictable day-to-day

PREDICTION OF LIGHTNING OCCURRENCE

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Persistence Variable

>1000	Active	2
1-999	Inactive	1
0	Zero	0

PREDICTION OF LIGHTNING OCCURRENCE

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Correlation with Lightning Occurrence

Atmospheric Index	6hrs	30hrs	54hrs
DayPersis012	.770	.653	.653
NightPersis012	.616	.611	.624
LI	596	586	581
CAPE	.501	.418	.490
500DD	473	472	465
850EPT	.465	.493	.433
700EPT	.461	.451	.428
700RH	.453	.453	.409
KI	.441	.488	.414

PREDICTION OF LIGHTNING OCCURRENCE

Variance Explained and Skills scores for validation samples (below)

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Conclusions

- Diurnal variations over land
 - Distinct 12hr and 24 hr cycles were observed.
 - Strike intensity displayed a broad minimum from 1100UTC to 1500UTC (6-10am local) and peaks between 1900UTC and 2100UTC (2-4 pm local).
- Diurnal variations over sea
 - Northern sea division displays an afternoon peak.
 - Southern sea division more characteristically displays a single nighttime peak.
 - Seasonal Variations
 - Average daily and hourly lightning activity is greatest during the late rainfall season and least during the dry season.
 - Lightning occurs predominantly to the east and centre of the island.

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

Conclusions

- The most significant indices for predicting lightning occurrence are:
 - Lifted Index
 - K Index
 - Daytime Persistence of Lightning
 - Nighttime persistence of Lightning
- Persistence improves the performance of the model indicated by an increase in the Critical Success Index from 0.50 for Coy to 0.77 for this study

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

- Introduction
- Data
- Data Analysis
- Conclusions
- Next Steps
- References

- Received lightning data for the English Speaking Caribbean for 2014 2018 from Vaisala.
- UWI Climate Studies Group at Mona will update work and look for some intersections with lightning activity, climate indices, and forest fires.

REFERENCES

- Chen, Anthony A.; Taylor, Michael A. "Investigating the Link Between Early Season Caribbean Rainfall and the El Nino+1 Year", International Journal of Climatology, January 2002.
- Christian, Hugh J.; Blakeslee, R J.; Boccippio, D J.; Boeck, W L.; Buechler, D E.; Driscoll, K T.; Goodman, S J.; Hall, J M.; Koshak, W J.; Mach, D M.; Stewart M F. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, Journal of Geophysical. Research, January 2003.
- Coy, A. "An Investigation of Isolated Thunderstorms Over Jamaica Caused by Daytime Heating" University of the West Indies, 2001.
- Dubrovsky, M. "Statistical Methods of Very Short Range Forecasting of Meteorological Phenomena" Auto Report on Doctoral Thesis, Charles University, Oct. 1996.
- Hardin, Danny; Goodman, Steve. *"Lightning Detection From Space A Lightning Primer"*, <u>http://thunder.msfc.nasa.gov/primer/index.html. (September 12</u>, 2005).
- Jamaica Gleaner. "Expect More Lightning Strikes With Rising Temperatures, Warn Experts" <u>http://web5.jamaica-gleaner.com/article/lead-stories/20191008/expect-more-lightning-strikes-rising-temperatures-warn-experts</u>
- Livingston, E; Nielson-Gammon J; Orville, R. E. "A Climatology, Synoptic Assessment, and Thermodynamic Evaluation for Cloud-To-Ground Lightning in Georgia: A Study for the 1996 Summer Olympics", American Meteorological Society, March 1996
- *"Questions and Answers about Lightning"*, <u>http://www.nssl.noaa.gov/edu/ltg/</u>. (September 12, 2005).
- *"Boltek Storm Tracker Lightning Detection System"*, <u>http://www.boltek.com/stormtracker.html</u> (July 20, 2006).
- "Matlab Function Reference fft."
- <u>http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/f16-6011.html.</u> (July 2, 2008).
- Science Alert. "Lightning Totally Does Strike Twice, And Now Scientists Know Why" <u>https://www.sciencealert.com/not-only-does-lightning-often-strike-twice-it-can-reuse-the-exact-same-path</u>